On the Existence of a Hollow Neutron Star

Ramen Kumar Parui *

ARC, Room No-F101, Block-F, Mall Enclave, 13, K. B. Sarani, Kolkata-700080, India.

*Author to whom correspondence should be addressed.


Abstract

Based on the Ni’s solution of Einstein Field Equations (EFE) we discuss the possibility of formation of a new type Neutron Star in which case the maximum density appears at a distance far from its center ( not at the center for normal neutron star case). As the inner core of such Neutron Star is a hollow sphere consideration of vacuum energy at the core offers the possibility of two types neutron star models — one with no exotic phase at the core and another one with a significant portion of it in the new phase. Ni’s solutions of EFE provide a new type neutron star model with hollow sphere in the inner core without violating the general relativity conditions. Based on the properties (i.e., findings of Ni’s solutions): a) void inside the center of the neutron star emerges naturally, and b) the solution leads to a mechanism for neutron stars to avoid collapse into black holes but remain regular, this author suggests the existence of a hollow neutron star is possible. If such type neutron stars really exist then it is also proposed that this new type Neutron Star can be detected through observation of electromagnetic counterpart by LIGO and VIRGO. Some problems related to this hollow neutron star are discussed.

Keywords: Field equations, exact solutions, relativistic stars, neutron star core, asymmetric matter


How to Cite

Parui , Ramen Kumar. 2023. “On the Existence of a Hollow Neutron Star”. International Astronomy and Astrophysics Research Journal 5 (1):119-27. http://journaliaarj.com/index.php/IAARJ/article/view/91.

Downloads

Download data is not yet available.

References

a) Einstein A. Die Feldgleichungen der Gravitation, Sitzungsberichte der Kӧniglich Preβischen Academie der Wissenschaften (Berlin). 1915;844-847.

b) Einstein A. Annalen der Physic. 1916;354:769

Misner C W, Thorne K S, Wheeler J A. Gravitation, 2nd Edition, W H Freeman, NY;1973.

Hewett LD. Thesis “A Solution to Einstein Gravitational Field equations for a Spherically Symmetric static perfect fluid” , (Missouri S & T Library and Learning Resources; 1965).

Schwarzschild K. Sitzungsberichte der Kӧniglich Preβischen Academie der Wissenschaften zu Berlin, Phys. Math. Classe 1916;1:189 – 196.

Oppenheimer JR, Volkoff GM. On the Massive Neutron Core Phys. Rev. 1939; 55:74.

Tolman RC. Static Solutions of Einstein's Field Equations for Spheres of Fluid (1939) Phys. Rev. 1939;55:364.

Ni J. Solutions without a maximum mass limit of the general relativistic field equations for neutron stars. Science China. 2011;54:1304.

Abbott BP. et al. {LIGO and VIRGO collaboration]. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2016;119: 161101.

Ivanenko D D, Kurdgeliadze D F. Astrofizika 1965;1:479.

Pacini F. High-energy Astrophysics and a Possible sub-nuclear Energy Source. Nature. 1966;209:389.

Itoh N. Hydrostatic Equilibrium of Hypothetical Quark Stars. Prog. Theor. Phys.1970;44:291.

Ellis JR, Kapusta JI, Olive KA. Phase transition in dense nuclear matter with quark and gluon condensates. Phys. Lett. B. 1991;273:123.

Csáki C, Erӧncel C, Hubisz J, Rigo G, Terning J. Neutron star mergers chirp about vacuum energy J. High Energy Phys. 2018;9:087.

Neslušan, L. The Ni’s Solution for Neutron Star and Outward Oriented Gravitational Attraction in Its Interior. J. Mod. Phys. 2015;6:2164.

Hewish A, Bell S J, Pilkington J D, Scott P F, Collins RA. Observation of a Rapidly Pulsating Radio Source. Nature 1968; 217:709.

Hewish A. Pulsating Star (Plenum Press, NY, 1968;vii & 5.

Baym G, Pethick C J, Sutherland P. The Ground State of Matter at High Densities: Equation of State and Stellar Models. Astrophys. J. 1971;170:299.

Haensel P, Potekhin AY, Yakovlev DG. Neutron Star I: Equation of State and Structure (Springer, NY; 2006).

Khanna KM, Kandie DK, Tonui JK, Cherop HK. Incommensurate Crystallization of neutron matter in Neutron Star. East Euro. J. Phys. 2020;2:57.

Chamel N, Haensel P. Physics of Neutron star Crusts. Living. Rev. Relativity. 2008;1:10.

Mann A. The golden age of neutron-star physics has arrived. Nature. 2020;579: 20.

Potekhin AY. The Physics of Neutron Star. Usp. Fiz. Nauk. 2010;180:1279–1304.

Weber F, et al. Phases of Hadron-Quark Matter in (Proto) Neutron Stars. Universe. 2019; 5:169.

Godzieba DA, Radice D, Bernuzzi S. On the Maximum Mass of Neutron Stars and GW190814. Astrophys. J. 2021;908:122.

Cromartie HTE, Fonseca SM, Ransom et al. Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar . Nature Astronomy. 2020;4:72.

Roupas Z. Secondary component of gravitational-wave signal GW190814 as an anisotropic neutron star. Astrophys. Space Sci. 2021;366:9.

Abbott RP, et al. GW190814: Gravitational Waves from the Coalescence of a 23 Solar Mass Black Hole with a 2.6 Solar Mass Compact Object. Astrophys. J. 2020; 896:L44.

Rhoades CE, Ruffini R. Maximum Mass of a Neutron Star. Phys. Rev. Lett. 1974; 32:324.

Gross DJ, Wilczek F. Ultraviolet Behavior of Non-Abelian Gauge Theories F. Phys. Rev. Lett. 1973;30:1343.

Gross DJ. Twenty five years of asymptotic freedom. Nucl. Phys. Proc. Suppl. 1999; 74:426.

Chandrasekhar S. MNRAS 1935; 1304:207.

Neslušan L. Another way of the continuous linkup of Neutron Star-body and Surrounding empty body. Int. J. Astron. Astrophys. 2014;4:399.

Neslušan L. Applicability of the Ni’s solution of the Einstein Field Equations to the real Objects, in Proc. of IAU Symp.: New Frontiers in Black holes Astrophysics. held in Ljubljano, Slovania . 2018;324:28.

Watt A. et al. Advancing Astrophysics with the Square Kilometre Array, (Proc. of the conference held in Giordini, Nxos, Italy; 2014.

Seidov ZF. The Stability of a Star with a Phase Change in General Theory of Relativity. Soviet Astronomy. 1971;15 :347.

Shaeffer R, Haensel P, Zdunik L. Phase transitions in stellar cores. I - Equilibrium configurations. Astron. Astrophys. 1983; 126:121.

Lindblom L. Phase Transitions and the Mass-Radius Curves of Relativistic Stars. Phys. Rev. D. 1998;58:024008.

Uryu K, Tsokaros A, Baiotti L. et al. Do triaxial supramassive compact stars exist? Phys. Rev. D. 2016;94:101302.

Parui RK. A New Compact Star --- the “Triaxial Star” --- and the Detection of a Cosmic Baby: A Possibility. Int. Astron. Astrophys. Res. J. 2023;5:38.

Zhou E, Tsokaros A, Rezzolla L, Xu R, Uryu K. Uniformly rotating, axisymmetric and triaxial quark stars in general relativity. Phys. Rev. D 2018;97: 023013.

Kraus U. Hollow accretion columns on neutron stars and the effects of gravitational light bending. Astrophys. J. 2001;563:289.