Sakholian Radius-To-Mass Ratio Postulate Applied to the Calculation of the Mass or the Radius of a Satellite in the Solar System and in the Milky Way
Published: 2023-09-27
Page: 189-200
Issue: 2023 - Volume 5 [Issue 1]
I. Sakho *
Département Physique Chimie, UFR Sciences et Technologies, Université Iba Der Thiam, Thiès, Sénégal.
*Author to whom correspondence should be addressed.
Abstract
In this work, it is demonstrated that the ratio of the radius of a satellite to that of its center of rotation is equal to the ratio of the mass of the satellite to that of its center of rotation raised to a power. This new radius-to-mass ratio relationship postulated, is referred as Sakholian radius-to-mass ratio (SRMR) postulate. For a given satellite, The SRMR-postulate indicates clearly that the Solar system contains three categories of planets: terrestrial planets (Mercury, Venus, Earth, and Mars : \(\alpha\)\(\approx\)0.40), dwarf planets (Ceres, Pluto, Haumea, Makemake, and Eris ; \(\alpha\) = 0.34) and giant planets (Jupiter, Saturn, Uranus, and Neptune : \(\alpha\) = 0.33). The value of \(\alpha\) equal to 0.34 is a theoretical argument in favor of the status of dwarf planet attributed to Pluto since the very controversial Prague 2006 IAU vote. In addition, SRMR-postulate is applied in the calculations of the mass and the density (volumic mass) of 64 small regular planetary moons: 24 for Jupiter (\(\alpha\) = 0.331), 12 for Saturn (\(\alpha\) = 0.330), 22 for Uranus (\(\alpha\) = 0.334) and 6 for Neptune (\(\alpha\) = 0.326). For all these 64
satellites, it is seen that \(\alpha\)\(\approx\) 0.33. Excellent agreements are obtained with literature masses of small regular satellites calculated assuming a constant density and using a given radius. Besides, it is demonstrated that the SRMR-postulate can be applied to the calculation of the mass or the radius of a given star belonging to the Milky Way. For particular cases of fourth stars, calculations of the \(\beta\)-parameter give \(\beta\) = 0.662 for both Alpha Centauri B and Rigel and \(\beta\) = 0.390 for both Alpha Centauri A and Capella A. These primary results indicate the possibility to use the SRMR-postulate to estimate the mass or the radius of a given star of the Milky Way containing between 200 to 400 billion stars. For all the Solar system bodies (satellites and planets), the radius-to-mass ratio condition is 0.3 < \(\alpha\) < 0.4. Out of this range, the mass or the radius determined must be revised. Then, \(\alpha\) may be very useful parameter for modeling the size (diameter or mass) of a given celestial satellite.
Keywords: Radius-To-Mass ratio relationship, SRMR-postulate, satellite, solar system, terrestrial planets, dwarf planets, giant planets, planetary moons, star, milky way
How to Cite
Downloads
References
Aksnes K. Two new Pluto moons named by the IAU. The International Astronomical Union; 2006. Available:https://www.iau.org/news/announcements/detail/ann06007/
Britt RR. Pluto Demoted: No Longer a Planet in Highly Controversial Definition; 2006. Available:https://www.space.com/2791-pluto-demoted-longer-planet-highly-controversial-definition.html
Christensen LL.. The Pluto affair: When professionals talk to professionals with the public watching. Future Professional Communication in Astronomy (Eds. A. Heck & L. Houziaux. Mém. Acad. Roy. Belg.); 2007. Available:https://www.iau.org/static/publications/pluto/fp-llc2.pdf
Probsthain K. 2018. Size and Shape of a Celestial Body – Definition of a Planet. https://doi.org/10.48550/arXiv.1807.08593.
Sarma. R et al. 2008. IAU Planet definition: Some confusion and their modifications. Available:https://arxiv.org/ftp/arxiv/papers/0810/0810.0993.pdf
Hughes DW.. Measuring the Moons’ mass. The Observatory. 2002;122:1167 Available:https://adsabs.harvard.edu/full/2002Obs...122...61H
Brown ME. On the size shape and density of dwarf planet Makemake.The Astrophysical Journal Letters. 2013;767:L7. DOI:10.1088/2041-8205/767/1/L7
Dunham ET et al. Haumea’s Shape. Composition. and internal structure. The Astrophysical Journal. 2019;877:41. Available:https://doi.org/10.3847/1538-4357/ab13b3
Sicardy B et al.. Size. Density. albedo and atmosphere limit of dwarf planet Eris from a stellar occultation. EPSC Abstracts. 2011;6. EPSC-DPS2011-137-8. 2011 EPSC-DPS Joint Meeting 2011.
Tancredi. G, Favre. S. Which are the dwarfs in the Solar System? – Icarus. 2008;195:851-862.
Sheppard SS. 2023. Moons of Jupiter. Earth & Planets Laboratory. Carnegie Institution for Science.
Retrieved 7 January 2023
Thomas PC. et al.. The small inner satellites of jupiter. Icarus. 1998;135(1): 360–371. DOI:10.1006/icar.1998.5976
Jacobson RA et al.. The masses of Uranus and its major satellites from voyager tracking data and Earth-based Uranian satellites data. The Astronomical journal. 1992;103:6.
Jacobson RA et al. The gravity field of the saturnian system from satellite. Observations and Spacecraft Tracking Data. The Astronomical Journal. 2006;132(6):2520–2526. DOI:10.1086/508812
Jacobson RA et al. Revised orbits of Saturn’s small inner satellites. Astron. J. 2008;35:261–263.
Porco CC et al.. Saturn’s small inner satellites: Clues to their origins. Science. 2007;318:1602–1607
Thomas PC. et al. Hyperion’s sponge-like appearance. Nature 2007a;448: 50 -56.
Thomas PC.The shape of triton from limb profiles. Icarus. 2000;148(2):587–588. DOI:10.1006/ICAR.2000.6511
Thomas PC. Radii, shapes, and topography of the satellites of Uranus from limb coordinates. Icarus. 1988;73(3):427–441.
Karkoschka E. Voyager's Eleventh Discovery of a Satellite of Uranus and Photometry and the First Size Measurements of Nine Satellites. Icarus. 2001;151(1):69–77.
Sheppard SS et al. An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness. The Astronomical Journal. 2005;129(1):518–525.
Showalter M R. Lissauer J J. 2006. The Second Ring-Moon System of Uranus: Discovery and Dynamics. Science. 311 (5763): 973–977.
Davies ME et al.. A control network of Triton. Journal of Geophysical Research. 1991;96(E1): 15.675–681.
DOI:10.1029/91JE00976
Karkoschka E. Sizes. shapes. and albedos of the inner satellites of Neptune.Icarus Pages;162(2):400-4072003.
[Kiss C et al. Nereid from space: rotation. Size and shape analysis from K2. Herschel and Spitzer observations. Monthly Notices of the Royal Astronomical Society. 2016;457(3):2908–2917.
Stooke PJ. The surfaces of Larissa and Proteus. Earth Moon Planet. 1994;65:31–54. Availab;e:https://doi.org/10.1007/BF00572198
Swift DC. et al.. Mass-Radius Relationships for exoplanets . The Astrophysical Journal. 2012;744:59:10.
DOI:10.1088/0004-637X/744/1/59
Seager S et al.. Mass-Radius Relationships for solid exoplanets. The Astrophysical Journal. 2007;669 :1279Y1297.
Bashi D et al.Two empirical regimes of the planetary mass-radius relation. A&A 2017;604. A83. DOI: 10.1051/0004-6361/201629922
Carvalho GA, Marinho Jr RM, Malheiro M.. Mass-Radius diagram for compact stars. XXXVII Brazilian Meeting on Nuclear Physics IOP Publishing Journal of Physics: Conference Series. 2015;630:012058 DOI:10.1088/1742-6596/630/1/012058
Mordasini C et al. Characterization of exoplanets from their formation. II. The planetary mass-radius relationship A&A 2012;547. A112. DOI: 10.1051/0004-6361/201118464
Alejandra D et al.The white dwarf mass–radius relation and its dependence on the hydrogen envelope. MNRAS 2019;484: 2711–2724. DOI:10.1093/mnras/stz160
Eker Z et al.. Interrelated main-sequence mass–luminosity. mass–radius. And mass–effective temperature relations. MNRAS.2018;479:5491–5511. DOI:10.1093/mnras/sty1834
Sakho I. Energy dissipated by an aster accelerated in a gravitational field: Estimation of the lifetime of a planet or a star being destroyed. J. Astrophys. Aerospace Technol. 2016;4:1-5.
Sakho I. atomic model of the solar system putting into evidence a tenth celestial object coupled to pluto. J Astrophys. Aerospace Technol. 2017;5:1-5.
Thomas PC: Shapes of the saturnian icy satellites and their significance – Icarus 2007b;190:573-584.
Tricarico P. Multilayer hydrostatic equilibrium of planets and synchronous moons:Theory and application to Ceres and to solar system moons – The Astrophysical J. 2014;782:2
Anderson JD et al. Amalthea's density is less than that of water. Science. 2005;308 (5726):1291–1293. DOI:10.1126/science.1110422
Burns JA et coll. Jupiter's Ring-Moon System" (PDF). Jupiter: The Planet. satellites and magnetosphere. Cambridge University Press. 2004;241–262.
Bibcode:2004jpsm.book..241B. ISBN 978-0-521-81808-7
Grav T et al. Neowise: Observations of the irregular satellites of Jupiter and Saturn. The Astrophysical Journal. 2015;809:3:9.
DOI:10.1088/0004-637X/809/1/3
Williams D R. 2020. NASA. National Space Science Data Center. novembre 2020 Available:https://fr.wikipedia.org/wiki/Syst%C3%A8me_solaire
Holler BJ, Grundy WM. Buie MW. Noll . KS. .The Eris/Dysnomia system I: The orbit of Dysnomia. Icarus. 2021;355114130
Thomas PC. Sizes. shapes. and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus. 2010;208(1):395–401. DOI:10.1016/j.icarus.2010.01.025
Sheppard S S. 2022. Moons of Saturn. Earth & Planets Laboratory. Carnegie Institution for Science.
Retrieved 21 August 2022
Boyce H et al. 2022. Multiwavelength Variability of Sagittarius A*.The Astrophysical Journal. 2019;931:7:16. Available:https://doi.org/10.3847/1538-4357/ac6104
Rachel A et al. Precision Millimeter Astrometry of the α Centauri AB System. The Astronomical Journal. 2021;162(1):14. DOI:10.3847/1538-3881/abfaff