Sakholian Radius-To-Mass Ratio Postulate Applied to the Calculation of the Mass or the Radius of a Satellite in the Solar System and in the Milky Way

I. Sakho *

Département Physique Chimie, UFR Sciences et Technologies, Université Iba Der Thiam, Thiès, Sénégal.

*Author to whom correspondence should be addressed.


Abstract

In this work, it is demonstrated that the ratio of the radius of a satellite to that of its center of rotation is equal to the ratio of the mass of the satellite to that of its center of rotation raised to a power. This new radius-to-mass ratio relationship postulated, is referred as Sakholian radius-to-mass ratio (SRMR) postulate. For a given satellite, The SRMR-postulate indicates clearly that the Solar system contains three categories of planets: terrestrial planets (Mercury, Venus, Earth, and Mars : \(\alpha\)\(\approx\)0.40), dwarf planets (Ceres, Pluto, Haumea, Makemake, and Eris ; \(\alpha\) = 0.34) and giant planets (Jupiter, Saturn, Uranus, and Neptune : \(\alpha\) = 0.33). The value of \(\alpha\) equal to 0.34 is a theoretical argument in favor of the status of dwarf planet attributed to Pluto since the very controversial Prague 2006 IAU vote. In addition, SRMR-postulate is applied in the calculations of the mass and the density (volumic mass) of 64 small regular planetary moons: 24 for Jupiter (\(\alpha\) = 0.331), 12 for Saturn (\(\alpha\) = 0.330), 22 for Uranus (\(\alpha\) = 0.334) and 6 for Neptune (\(\alpha\) = 0.326). For all these 64

satellites, it is seen that \(\alpha\)\(\approx\) 0.33. Excellent agreements are obtained with literature masses of small regular satellites calculated assuming a constant density and using a given radius. Besides, it is demonstrated that the SRMR-postulate can be applied to the calculation of the mass or the radius of a given star belonging to the Milky Way. For particular cases of fourth stars, calculations of the \(\beta\)-parameter give \(\beta\)  = 0.662 for both Alpha Centauri B and Rigel and \(\beta\)  = 0.390 for both Alpha Centauri A and Capella A. These primary results indicate the possibility to use the SRMR-postulate to estimate the mass or the radius of a given star of the Milky Way containing between 200 to 400 billion stars. For all the Solar system bodies (satellites and planets), the radius-to-mass ratio condition is 0.3 < \(\alpha\)  < 0.4. Out of this range, the mass or the radius determined must be revised. Then, \(\alpha\)  may be very useful parameter for modeling the size (diameter or mass) of a given celestial satellite.

Keywords: Radius-To-Mass ratio relationship, SRMR-postulate, satellite, solar system, terrestrial planets, dwarf planets, giant planets, planetary moons, star, milky way


How to Cite

Sakho , I. (2023). Sakholian Radius-To-Mass Ratio Postulate Applied to the Calculation of the Mass or the Radius of a Satellite in the Solar System and in the Milky Way. International Astronomy and Astrophysics Research Journal, 5(1), 189–200. Retrieved from http://journaliaarj.com/index.php/IAARJ/article/view/95

Downloads

Download data is not yet available.

References

Aksnes K. Two new Pluto moons named by the IAU. The International Astronomical Union; 2006. Available:https://www.iau.org/news/announcements/detail/ann06007/

Britt RR. Pluto Demoted: No Longer a Planet in Highly Controversial Definition; 2006. Available:https://www.space.com/2791-pluto-demoted-longer-planet-highly-controversial-definition.html

Christensen LL.. The Pluto affair: When professionals talk to professionals with the public watching. Future Professional Communication in Astronomy (Eds. A. Heck & L. Houziaux. Mém. Acad. Roy. Belg.); 2007. Available:https://www.iau.org/static/publications/pluto/fp-llc2.pdf

Probsthain K. 2018. Size and Shape of a Celestial Body – Definition of a Planet. https://doi.org/10.48550/arXiv.1807.08593.

Sarma. R et al. 2008. IAU Planet definition: Some confusion and their modifications. Available:https://arxiv.org/ftp/arxiv/papers/0810/0810.0993.pdf

Hughes DW.. Measuring the Moons’ mass. The Observatory. 2002;122:1167 Available:https://adsabs.harvard.edu/full/2002Obs...122...61H

Brown ME. On the size shape and density of dwarf planet Makemake.The Astrophysical Journal Letters. 2013;767:L7. DOI:10.1088/2041-8205/767/1/L7

Dunham ET et al. Haumea’s Shape. Composition. and internal structure. The Astrophysical Journal. 2019;877:41. Available:https://doi.org/10.3847/1538-4357/ab13b3

Sicardy B et al.. Size. Density. albedo and atmosphere limit of dwarf planet Eris from a stellar occultation. EPSC Abstracts. 2011;6. EPSC-DPS2011-137-8. 2011 EPSC-DPS Joint Meeting 2011.

Tancredi. G, Favre. S. Which are the dwarfs in the Solar System? – Icarus. 2008;195:851-862.

Sheppard SS. 2023. Moons of Jupiter. Earth & Planets Laboratory. Carnegie Institution for Science.

Retrieved 7 January 2023

Thomas PC. et al.. The small inner satellites of jupiter. Icarus. 1998;135(1): 360–371. DOI:10.1006/icar.1998.5976

Jacobson RA et al.. The masses of Uranus and its major satellites from voyager tracking data and Earth-based Uranian satellites data. The Astronomical journal. 1992;103:6.

Jacobson RA et al. The gravity field of the saturnian system from satellite. Observations and Spacecraft Tracking Data. The Astronomical Journal. 2006;132(6):2520–2526. DOI:10.1086/508812

Jacobson RA et al. Revised orbits of Saturn’s small inner satellites. Astron. J. 2008;35:261–263.

Porco CC et al.. Saturn’s small inner satellites: Clues to their origins. Science. 2007;318:1602–1607

Thomas PC. et al. Hyperion’s sponge-like appearance. Nature 2007a;448: 50 -56.

Thomas PC.The shape of triton from limb profiles. Icarus. 2000;148(2):587–588. DOI:10.1006/ICAR.2000.6511

Thomas PC. Radii, shapes, and topography of the satellites of Uranus from limb coordinates. Icarus. 1988;73(3):427–441.

Karkoschka E. Voyager's Eleventh Discovery of a Satellite of Uranus and Photometry and the First Size Measurements of Nine Satellites. Icarus. 2001;151(1):69–77.

Sheppard SS et al. An Ultradeep Survey for Irregular Satellites of Uranus: Limits to Completeness. The Astronomical Journal. 2005;129(1):518–525.

Showalter M R. Lissauer J J. 2006. The Second Ring-Moon System of Uranus: Discovery and Dynamics. Science. 311 (5763): 973–977.

Davies ME et al.. A control network of Triton. Journal of Geophysical Research. 1991;96(E1): 15.675–681.

DOI:10.1029/91JE00976

Karkoschka E. Sizes. shapes. and albedos of the inner satellites of Neptune.Icarus Pages;162(2):400-4072003.

[Kiss C et al. Nereid from space: rotation. Size and shape analysis from K2. Herschel and Spitzer observations. Monthly Notices of the Royal Astronomical Society. 2016;457(3):2908–2917.

Stooke PJ. The surfaces of Larissa and Proteus. Earth Moon Planet. 1994;65:31–54. Availab;e:https://doi.org/10.1007/BF00572198

Swift DC. et al.. Mass-Radius Relationships for exoplanets . The Astrophysical Journal. 2012;744:59:10.

DOI:10.1088/0004-637X/744/1/59

Seager S et al.. Mass-Radius Relationships for solid exoplanets. The Astrophysical Journal. 2007;669 :1279Y1297.

Bashi D et al.Two empirical regimes of the planetary mass-radius relation. A&A 2017;604. A83. DOI: 10.1051/0004-6361/201629922

Carvalho GA, Marinho Jr RM, Malheiro M.. Mass-Radius diagram for compact stars. XXXVII Brazilian Meeting on Nuclear Physics IOP Publishing Journal of Physics: Conference Series. 2015;630:012058 DOI:10.1088/1742-6596/630/1/012058

Mordasini C et al. Characterization of exoplanets from their formation. II. The planetary mass-radius relationship A&A 2012;547. A112. DOI: 10.1051/0004-6361/201118464

Alejandra D et al.The white dwarf mass–radius relation and its dependence on the hydrogen envelope. MNRAS 2019;484: 2711–2724. DOI:10.1093/mnras/stz160

Eker Z et al.. Interrelated main-sequence mass–luminosity. mass–radius. And mass–effective temperature relations. MNRAS.2018;479:5491–5511. DOI:10.1093/mnras/sty1834

Sakho I. Energy dissipated by an aster accelerated in a gravitational field: Estimation of the lifetime of a planet or a star being destroyed. J. Astrophys. Aerospace Technol. 2016;4:1-5.

Sakho I. atomic model of the solar system putting into evidence a tenth celestial object coupled to pluto. J Astrophys. Aerospace Technol. 2017;5:1-5.

Thomas PC: Shapes of the saturnian icy satellites and their significance – Icarus 2007b;190:573-584.

Tricarico P. Multilayer hydrostatic equilibrium of planets and synchronous moons:Theory and application to Ceres and to solar system moons – The Astrophysical J. 2014;782:2

Anderson JD et al. Amalthea's density is less than that of water. Science. 2005;308 (5726):1291–1293. DOI:10.1126/science.1110422

Burns JA et coll. Jupiter's Ring-Moon System" (PDF). Jupiter: The Planet. satellites and magnetosphere. Cambridge University Press. 2004;241–262.

Bibcode:2004jpsm.book..241B. ISBN 978-0-521-81808-7

Grav T et al. Neowise: Observations of the irregular satellites of Jupiter and Saturn. The Astrophysical Journal. 2015;809:3:9.

DOI:10.1088/0004-637X/809/1/3

Williams D R. 2020. NASA. National Space Science Data Center. novembre 2020 Available:https://fr.wikipedia.org/wiki/Syst%C3%A8me_solaire

Holler BJ, Grundy WM. Buie MW. Noll . KS. .The Eris/Dysnomia system I: The orbit of Dysnomia. Icarus. 2021;355114130

Thomas PC. Sizes. shapes. and derived properties of the saturnian satellites after the Cassini nominal mission. Icarus. 2010;208(1):395–401. DOI:10.1016/j.icarus.2010.01.025

Sheppard S S. 2022. Moons of Saturn. Earth & Planets Laboratory. Carnegie Institution for Science.

Retrieved 21 August 2022

Boyce H et al. 2022. Multiwavelength Variability of Sagittarius A*.The Astrophysical Journal. 2019;931:7:16. Available:https://doi.org/10.3847/1538-4357/ac6104

Rachel A et al. Precision Millimeter Astrometry of the α Centauri AB System. The Astronomical Journal. 2021;162(1):14. DOI:10.3847/1538-3881/abfaff