Stark Widths and Shifts of Rh II in Chemically Peculiar Stars
Published: 2021-12-14
Page: 151-162
Issue: 2021 - Volume 3 [Issue 1]
Zoran Simić *
Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia.
Nenad M. Sakan
University of Belgrade, Institute of Physics, P.O.Box 57, 11001 Belgrade, Serbia.
*Author to whom correspondence should be addressed.
Abstract
Over the last few years, many of the available data from modern experimental techniques and sophisticated theoretical methods have become even more important to stellar spectroscopy. Obviously, the shape of the spectral line is conditioned by natural broadening, Doppler and collision broadening. In this paper, we have considered the Stark broadening as a dominant form of collision broadening of the spectral lines of singly ionized rhodium. Here, Stark broadening parameters widths and shifts have been calculated for 31 Rh II transitions using the simplified modified semiempirical method of Dimitrijevi´c and Konjevi´c. We analyzed our results for Stark shifts and compared these obtained values for the whole set of calculated transitions. Also, Stark widths were analyzed on an appropriate model of the atmosphere of chemically peculiar stars, type A.
Keywords: Atomic data, lines, plasmas
How to Cite
Downloads
References
Adelman Saul J. Selected Line Identifications in the Ultraviolet Spectrum of γ Equulei. Astrophysical Journal Supplement. 1974;27:183.
Preston George W. The mean surface fields of magnetic stars. Astrophysical Journal. 1971;164:309.
Adelman SJ, Bidelman, WP, Pyper DM. The Peculiar A Star γ Equulei: a Line Identification Study of λλ 3086 3807. Astrophysical Journal Supplement. 1979;40:371-424.
Moore, Charlotte E, Minnaert, MGJ, Houtgast J. The solar spectrum 2935 A˚ to 8770 A˚ . NBS Monograph No. 61, U. S. Govt.; 1966.
Lundberg H, Johansson S, Litzen U, Wahlgren CM, Leckrone DS. Oscillator Strengths and the Rhodium Abundance in the HgMn Type Star χ LUPI. In Brandt, John C. and Ake, Thomas B. and Petersen, Carolyn Collins. The Scientific Impact of the Goddard High Resolution Spectrograph. Astronomical Society of the Pacific Conference Series. 1998;143:343.
Cowley CR, Hubrig S, Palmeri P, Quinet P, Bie´mont, E´ , Wahlgren GM, Schu¨ tz O, Gonza´lez JF. HD 65949: Rosetta stone or red herring. Monthly Notices of the Royal Astronomical Society. 2010;405(2):1271-
Castelli F, Hubrig S. A spectroscopic atlas of the HgMn star HD 175640 (B9 V) λλ 3040- 000 A˚ . Astronomy and Astrophysics. 2004;425:263-270.
Cowley CR, Hubrig S, Gonza´lez JF. Stratification and isotope separation in CP stars. Monthly Notices of the Royal Astronomical Society. 2009;396(1):485-499.
Quinet P, Bie´mont E, Palmeri P, Engstro¨ m L, Hartman H, Lundberg H, Nilsson H. Oscillator strengths for lines of astrophysical interest in Rh II. Astronomy and Astrophysics. 2012;537:A74.
Ba¨ ckstro¨ m E, Nilsson H, Engstro¨ m L, Hartman H, Mannervik S. Experimentally determined oscillator strengths in Rh II. Journal of Physics B Atomic Molecular Physics. 2013;46(20):205001.
Zhang Bo, Li Ji, Wang Yue-Xiang, Zhang Yan-Xia, Liu Jun-Hong, Peng Qiu-He. Two R-Process Components in Ultra-Metal- Poor Stars: The Neutron-Capture Element
Distribution of CS 22892-052. Astrophysics and Space Science. 2002;280(4):325-336.
Dimitrijevic´ MS, Konjevic´ N. Simple estimates for Stark broadening of ion lines in stellar plasmas. Astronomy and Astrophysics. 1987;172(1-2):345-349.
Dimitrijevic´ MS, Konjevic´ N. Stark widths of doubly- and triply-ionized atom lines. Journal of Quantitative Spectroscopy and Radiative Transfer. 1980;24(6):451-459.
Sahal-Bre´chot S. Impact Theory of the Broadening and Shift of Spectral Lines due to Electrons and Ions in a Plasma. Astronomy and Astrophysics. 1969;1:91.
Sahal-Bre´chot S. Impact Theory of the Broadening and Shift of Spectral Lines due to Electrons and Ions in a Plasma (Continued). Astronomy and Astrophysics. 1969;2:322.
Zoran Simic´, Nenad M. Sakan, Nenad Milovanovic´, Mihailo Martinovic´. Singly Ionized Iridium Spectral Lines in the Atmosphere of Hot Stars. International Astronomy and Astrophysics Research Journal. 2021;3(2):33-47.
Kramida A, Yu. Ralchenko, Reader J, NIST ASD Team. National Institute of Standards and Technology, Gaithersburg, MD. HOWPUBLISHED = NIST Atomic Spectra Database (ver. 5.8), [Online] Available:https://physics.nist.gov/asd [2021, October 24].
Atomic data for VUV lines of astrophysical interest in singly ionized rhodium. Journal of Electron Spectroscopy and Related Phenomena. 2011;184(3):174-176.
Oscillator Strengths and Branching Fractions of 4d75p-4d35s Rh II Transitions. Journal of Quantitative Spectroscopy and Radiative Transfer. 2017;187:280-286.
Majlinger Zlatko, Simic´ Zoran, Dimitrijevic´, Milan S. On the Stark Broadening of Lu III Spectral Lines. Journal of Astrophysics and Astronomy. 2015;36(4):671-679.
Majlinger Zlatko, Simic´ Zoran, Dimitrijevic´, Milan S. Stark broadening of Zr IV spectral lines in the atmospheres of chemically peculiar stars. Monthly Notices of the Royal Astronomical Society. 2017;470(2):1911- 1918.
Simic´ Zoran, Sakan Nenad M. The electron- impact broadening of the Nb III for 5p-5d transitions. Monthly Notices of the Royal Astronomical Society. 2020;491(3):4382- 4386.
Sancho FJ. Estructura del espectro del Rh II. An. Fis. Quim. 1958;Ser. A(54(1-2)):4164.
Kuruczs RL. Model atmospheres for G, F, A, B and O stars. ApJS. 1979;40:1-340.