Gravity Model of Black Holes and Solar Planets
Published: 2022-10-22
Page: 156-162
Issue: 2022 - Volume 4 [Issue 1]
Faical Ramdani *
BP 1515, Hay essalam Salé 11030, Morocco.
*Author to whom correspondence should be addressed.
Abstract
By considering that gravity changes at increased elevation contribute to change in velocity we can obtain timescale variation related gravity as alternative to time dilation related space-time curvature. Gravity changes around planets and black holes are revisited by introducing a gravitosphere model where gravity works inside and around planets. Resulting gravitospheres related to planets and black holes radius shows evidence for a critical Radius of a star to develop black hole structure. Internal structure based gravity and velocity variations of black holes is suggested by including captured asteroids input which results in phase transformations and release of kinetic energy. These processes may explain vibrations related radiations, an adapted volcanic style with possible escape of particles and gravitational waves from horizon zone. By assuming that gravity control velocity changes and related structures it will provide the first elements of a universal gravity model.
Keywords: Gravity, velocity of light, black hole, horizon, solar planets
How to Cite
Downloads
References
Einstein A. Die Grundlagen der Allegemeinen Relativitätstheorie. Annalen der Physik. 1916;29.
Muller H, Peters A, Chu S. A precision measurement of the gravitational redshift by the interference of matter waves. Nature. 2010;463.
Chou CW, Hume DB, Rosenband T, Wineland DJ. Optical clocks and relativity. Science. 2010;329;1630-1633.
Bothwell T, Kennedy C, Aeppli A, Kedar D, Robinson J, Oekler E, Staron A, Ye J. Resolving gravitational redschift across a millimeter-scale atomic sample. Nature. 2022;602;420-424.
Denker H, Timmen L, Voigt C, Weyers S, Peik E, Margolis HS, Delva P, Wolf P, Petit G. Geodetic methods to determine relativistic redshift at the level of 10-18 in the context of international timescales: a review and practical results. Journal of Geodesy. 2018;92;487-516.
Ramdani F. Gravity constraints on the measurements of the speed of light. Int. Journ. Astron. Astrophys. 2019;9;265-273.
DOI: 10.4236/ijaa.2019.93019
Wilkins DR, Gallo LC, Costantini E, Brandt WN, Blandford RD. Light bending and X-ray echoes from behind supermassive black hole. Nature. 2021;595;657-660.
Mendez M, Karpouzas K, Garcia F, Zhang, L, Zhang Y, Belloni TM, Altamirano D. () Coupling beween the accreting corona and the relativistic jet in the microquasar GRS1915+105. Nature Astron; 2022.
DOI: 10.1038/s41550-022-01617-y
Liu LG. Phase transformations, earthquakes and the descending lithosphere. Phys. Earth Plan. Int. 1983; 32(3);226-240.
DOI: 10.1016/0031-9201(83)90128-0
Kirby SH, Stein S, Okal EA, Rubie DC. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. of Geophys. 1996;34(2);261-306.
Artru J, Ducic V, Kanamori H, Lognonné P, Murakami M. Ionosphere detection of gravity waves induced by tsunamis. Geophys. J. Int. 2005;160(3);840-848.
Garcia R, Lognonné P, Bonnin X. Detecting atmospheric perturbations produced by Venus quakes. Geophys. Res. Lett. 2005;32(16); L16205.
DOI: 10.1029/2005GL023558