A New Compact Star—the "Triaxial Star"—and the Detection of a Cosmic Baby: A Possibility

Ramen Kumar Parui *

ARC, Room No-F101, Block-F, Mall Enclave, 13, K. B. Sarani, Kolkata- 700 080, India.

*Author to whom correspondence should be addressed.


Abstract

The “Triaxial Star” was first proposed by S. Chandrasekhar in 1969, but to date it has not detected. The Cosmic Baby, i.e., SwiftJ1818.0-1607, is the youngest magnetar. It’s characteristic age is ~300 years, with a superfast spin period ~ 1.36s and a strong surface dipole magnetic field ~ 3 x 1014 G. Taking into account three facts:

  1. The ambipolar diffusion in the neutron star core is expected to be the dominant mode of field decay in the early evolution of magnetar ( as long as the age much less than ~ 104) ;
  2. Magnetars’s field decay is negligible as long as the core temperature is a few times of 108 K (i.e. < 109 K) ;
    • The coupling between the decay of internal magnetic field and the cooling is so strong in the early phase of Magnetar that it significantly slows down both processes but interior magnetic fields able to remain strong enough resulting the core temperature stays higher than several times 108K for thousands years (at least 103 years proposed by Dall’Osso et al. [1]) we suggest the swift J1818.0-1607 is a triaxial magnetar i.e., simply Triaxial Star. Significance of our study is — continuous observation thus provides an opportunity for (a) detection of existence of a real Triaxial Star, (b) understanding of the evolution from strong to ultra-strong magnetic field of a neutron star and a magnetar , (c) the bizarre properties of newly baby magnetar,d)how the fast spin period and interior ultra-strong magnetic field turn the baby magnetar into a unique compact object possessing spontaneously broken axial symmetry and a potential source for measuring the properties of triaxially deformed neutron star (i.e. Magnetar) or triaxialstar. This author encourages the GW community to search the Triaxial Stars through electromagnetic counterparts during their observation of compact objects.

Keywords: Gravitational waves, triaxial star, neutron star, pulsar, magnetar


How to Cite

Parui , Ramen Kumar. 2023. “A New Compact Star—the ‘Triaxial Star’—and the Detection of a Cosmic Baby: A Possibility”. International Astronomy and Astrophysics Research Journal 5 (1):38-47. https://journaliaarj.com/index.php/IAARJ/article/view/81.

Downloads

Download data is not yet available.

References

Dall’Osso S, Shore SN, Stella L. Early evolution of newly born magnetars with a strong toroidal field. MNRAS. 2009; 398:1869. DOI:10.1111/j.1365-2966.2008.14054.x

Chandrasekhar S. Ellipsoidal Figures of Equilibrium. Yale University Press, New Haven; 1969

Bonazzola S, Frieben J, Gourgoulhon E. 1998 Spontaneous symmetry breaking of rapidly rotating stars in general relativity. Astron. & Astrophys. 1998; 331;280.DOI: 10.48550/arxiv.gr-qc/9710121.

Friedman JL, Stergioulas J. Rotating relativistic stars. Cambridge University Press, Cambridge, UK; 2013.

Straumann N. General Relativity. Springer, Netherlands; 2013.

Uryū K, Tsokaros A, Baiotti L, Galeazzi F, Sugiyama N, Taniguchi K, Yoshida S.Do Triaxial supramassive compact stars exist? Phys. Rev. D. 2016;94:101302.DOI:10.1103/PhysRevD.94.101302.

Lai D, Shapiro SL. Gravitational radiation from rapidly rotating nascent neutron stars. Astrophys. J. 1995;442; 259.

DOI:101086/175438.

Piro AL, Ott CD. Supernova fallback onto magnetars and propeller-powered supernovae. Astrophys. J. 2011;736: 108. DOI:10.1088/0004-637X/761/1/108

Piro AL, Thrane E. Gravitational Waves from fallback accretion onto neutron stars.Astrophys. J. 2012;761:63.

DOI:10.1088/0004-637X/761/1/63.

Harry GM. (LIGO Scientific Collaboration). Alignment sensing and control in advanced LIGO”. Class. Quan. Grav. 2010;27: 084006.

Lambibi F S, Benkaiem D, Joyce M. On the generation of triaxiality in the collapse of cold spherical self-gravitating systems. MNRAS. 2015;449:4458. DOI:doi.org/10.1093/mnras/stv581

Rather IA, Rahaman U, Dexheimer V, Usmani AA, Patra SK. Magnetic deformation in Neutron Stars. in Proc. DAE Symp in Nucl. Phys. 2021;65:478.

Haskell B, Samuelsson L, Glampedakis K, Andersson N. Modelling magnetically deformed neutron stars. MNRAS. 2008; 385:531. DOI:10.1111/j.1365-2966.2008.12861.x.

Gehrels N, et al. The swift gamma-ray burst mission. Astrophys. J. 2004;611:1005. DOI:10.1086/422091

Evans PA, Gropp JD, Kennea JA, et al. Swift-BAT trigger 960986: Swift detection of a new SGR Swift J. 1818.0-1607. 2020;GCN circular #27373

Esposito P, Rea N, Borghese A, Coti-Zelati F. et al. A very young radio-loud magnetar astrophys. J. Lett. 2020;896:L30. DOI:10.3847/2041-8213/ab9742

Enoto T, Sakamoto T, Younes G.et al. NICER detection of 1.36 sec periodicity from a new magnetar. Swift J1818.0-1607. 2020;(Astronomer’s Telegram # 13551)

Champion D, Desvignes G, Jankowski F. Spin-evolution of the new magnetar J 1818.0-1607. 2020;(A. Tel # 13559)

Blumer H, Safi-Harb S. Chandra observations of the newly discovered magnwtar SWIFT J1818.0–1607. Astrophys. J. Lett. 2020;904:L19.

Duncan RC, Thompson C. Formation of very strongly magnetized neutron stars astrophys. J. 1992;392:L9.

DOI:10.1086/186413

Paczynski B.GB 790305 as a very strongly magnetized neutron star. Acta Astron. 1992;42:145.

Thompson C, Duncan RC. soft gamma repeaters as very strongly magnetized neutron stars. MNRAS. 1995;275:255. DOI:10.10.1093/mnras/275.2.255

Ruderman A. Pulsars: Structure and dynamics. Ann. Rev. Astron. Astrophys. 1972;10:427. DOI:10.1146/annurev.aa.10.090172.002235

Dev K, Gleiser M. Anisotropic stars: Exact solutions. Gen. Rel. Grav. 2002;34:1793.

Cutler C. Gravitational waves from neutron stars with large toroidal B fields. Phys. Rev. D. 2002; 66:084025.

DOI:10.1103/PhysRevD.66.084025

Lai D, Shapiro S. Cold equation of state in a strong magnetic field: effects of inverse beta –decay. Astrophys. J. 1991;383:745. DOI:10.1086/170831

Melatos A. Bumpy spin-down of anomalous x-ray pulsars: the Link with Magnetars. Astrophys. J. 1999;519:L77.

Goldreich P. Neutron star crusts and alignment of magnetic axes in pulsars. Astrophys. J. 1970;160:L11.

DOI:10.1086/180513

deCampli W M. Astrophys. J. 1980;242:306.

Thompson C, Duncan RC. Neutron star dynamos and the origins of pulsar magnetism. Astrophys. J. 1993;408:194. DOI:10.1086/172580

Moriya TJ, Tauris TM. Constraining the ellipticity of strongly magnetized neutron stars powering super-luminous supernova. MNRAS. 2016;460:L55. DOI:10.1093/mnrasl/slw072

Cutler C, Jones DI. Gravitational wave damping of neutron star wobble. Phys. Rev. D. 2001;63: 024002.

DOI:10.1103/PhysRevD.63.024002

Del Zanna L, Bucciantini N. Covariant and 3 + 1 equations for dynamo-chiral general relativistic magneto-hydrodynamics. MNRAS. 2018;479:657. DOI:10.1093/mnras/sty1633

Ciolfi R,Kastaun W, Kalinani JV, Giacomazzo B. First 100 ms of a long-lived magnetized neutron star formed in a binary neutron star merger. Phys. Rev. D. 2019;100:023005. DOI:10..1103/PhysRevD.100.023005

Franceschetti K, Del Zonna L. General Relativistic Mean-Field Dynamo Model for Proto-Neutron Stars. Universe. 2020; 6:83. DOI:10.3390/universe6060083

Dall’Osso S, Granot J, Piran T. Magnetic field decay in neutron stars: from soft gamma repeaters to ‘weak-field magnetars’MNRAS. 2012;422:2878. DOI:10.1111/j.1365-2966.2012.20612.x

Thompson C, Duncan RC. The soft gamma repeaters as very strongly magnetized neutron stars. II. Quiescent Neutrino, X-Ray, and Alfven Wave Emission. Astrophys. J. 1996;473:322. DOI:10.1086/178147

Goldreich P, Reisenegger A. Magnetic field decay in isolated neutron stars. Astrophys. J. 1992;395:250.

DOI:10.1086/171646

Pons JA, Link B, Miralles JA, Geppert U. Evidence for heating of neutron stars by magnetic-field decay. Phys. Rev. Lett. 2007;98:071101. DOI:10.1103/PhysRevLett.98.071101

Pons JA, Geppert U. Magnetic field dissipation in neutron star crusts: from magnetars to isolated neutron stars. Astron. Astrophys. 2007;470:303. DOI:10.1051/0004-6361:20077456

Zhou E, Tsokaros A, Rezzolla L, Xu R, Uryu K.Uniformly rotating, axisymmetric, and triaxial quark stars in general relativity. Phys. Rev. D. 2018;97:023013. DOI:10.1103/PhysRevD.97.023013

Kouveliotou C, Stohmayer T, Hurley K, van Paradijs J, Finger MH, Dieters S, Wood P, Thompson C, Duncan RC. Discovery of a magnetar associated with the Soft Gamma Repeater SGR 1900+14.Astrophys. J. Lett. 1999;510:L115.

DOI:10.1086/311813

Jawor J A, Tauris T M.Modelling spin evolution of magnetars.MNRAS. 2022 ;509; 634 DOI:10.1093/mnras/stab2677

White CJ, Burrows A, Coleman MSB, Vartanyan S. Astrophys. J. 2022 ;396; 111.

Yakovlev DG, Gnedin OY, Gusakov ME, Kaminkar AD, Lavenfish KP, Potekhin AY. Neutron star cooling. Nucl. Phys. A2005 ;752; 590. DOI:10.10.1016/j.nuclphysa.2005.02.061

Chamel N, Haensel P. Physics of neutron star crusts living rev. Relativity. 2005; 11:10. DOI:10.12942/lrr-2008-10

Bucciantini N, Pili AG, Del Zanna L. Modelling the structure of magnetic fields in neutron star: from the interior to the magnetosphere. Proceedings of the 10th International Conference on Numerical Modeling of Space Plasma Flows; 2015.

Lindbolm L, Pwen BJ, Morsink SM. Gravitational radiation instability in hot young neutron stars. Phys. Rev. Lett. 1998;80:4843. DOI:10.1103/PhysRevLett.80.4843

Doneva DD, Kokkatas KD, Prigouras P. Gravitational wave afterglow in binary neutron star mergers. Phys. Rev. D. 2015;92:104040. DOI:10..1103/PhysRevD.92.104040

Koranda S, Stergioulas N, Friedman JL. Upper limits set by causality on the rotation and mass of uniformly rotating relativistic stars. Astrophys. J.1997 ;488; 799. DOI:10. 10.1086/304714

Xie L, Wei DM, Wang Y, Jin ZP. Constraining the ellipticity of the newborn magnetar with the observational data of long gamma-ray bursts. Astrophys. J. 2022;934:125. DOI:10.3847/1538-4357/ac7c13

MajidW A, Pearlman AA, Prince TA, Naudet CA, Bansal K. Flattening of Swift J. 1818.0 – 1607’s spectral index via dual radio frequency observation with the Deep Space Newtork “. 2022 ;A. Tel # 13898.

Rizaldy R, Sulaksono A. Magnetized deformation of neutron stars. in Proc. 3rdPadjadjaran Int. Phys. Conf. Symp., J. of Phys. Conf. Series. 2018;1080:012031

Morasi S, Ciolfi R, Schneider R, Stella L. Stochastic background of gravitational waves emitted by magnetars. MNRAS. 2011 ;411:2549. DOI:10.1111/j.1365-2966.2010.17861.x

Heras R. Pulsars are born as Magnetars. ASP Conf. Ser. 2012;466:253.

Sieniawska M, Bejger M. Continuous gravitational waves from neutron stars: current status and prospects. Universe. 2019;2019:217. DOI:10.3390/universe5110217

Ibrahim AY, Borghese A, Rea N, Cotzelati F. Deep X-Ray and radio observations of the first outburst of the young magnetar swift J1818.0−1607. Astrophys. J. 2023; 943: 20. DOI:10.3847/1538-4357/aca528

Huang J-X, Lü, H-J, Rice J, Liang E-W. Gravitational –wave evolution of newborn magnetars with different deformed structures. Phys. Rev. D. 2022; 105; 103019. DOI:10.1103/PhysRevD.105.103019

Uzuner Mete, Keskin Ö, Kaneko Y, Gögüs, Roberts OJ, Lin L, Baring MG, Güngör, Kouveliotou C, van der Horst AJ, Younes G. Bursts from high-magnetic-field pulsars swift J 1818.0-1607 and PSR J1846.4-0258. Astrophys. J. 2023;942:8.

DOI:10.3847/1538-4357/aca482